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Abstract

The Markov Chain Chain Monte Carlo (MCMC) method, which is a special case of
the Gibbs sampler, is a very powerful method to simulate from complicated distri-
butions arising in many contexts, including image analysis, computational Bayesian
analysis, and so on. Existing results that ensure that this method will converge
involve conditions which are difficult to verify in practice, and most practitioners,
convinced that their particular problem will not be pathological and give up verifying
altogether. This paper gives a new set of sufficient conditions which are easy to verify
in most applications.
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1 The First Example

We begin with a familiar example found in the book Rao (1965) “Linear Statistical Inference
and its Applications” on data on blood groups in human populations use it to illustrate
Markov Chain Monte Carlo methods. Every human being can be classified into one of four
blood groups O, A, B and AB. The inheritance of these blood groups is controlled by three
allelomorphic genes O, A and B, where O is recessive to both A and B. If r,p and q are
the gene frequencies of O, A and B, then the probabilities of of the six genotypes and the
four phenotypes, under random mating, and a typical data on a human population of size
N can be represented by the following table:

Group Probabilities Frequency

Phenotype Genotype Phenotype Genotype Observed Unobserved

o 00 r? r? n(0)

CE e (o (S
B AN b
AB AB 2pq ¢ n(4B)

Totals 1 1 N

Here n(0),n(A),n(B) and n(AB), which will be called the data, are the observed
frequencies of the four blood groups in a population of size N. The frequencies n(AA) and
n(BB) of the genotypes AA and BB cannot be observed. The problem is to estimate the
probabilities p, ¢ and r.

The data follow a simple multinomial distribution with 4 cells, where the cell probabil-
ities are functions of the parameters of interest, and the likelihood is proportional to

r2O)(p? + 2pr)" A (¢ + 24r)"®) (2pg)"45).

The maximum likelihood equations are not easy to solve directly and Rao ((1965) pp. 305—
309) suggests the standard method of scoring to obtain the maximum likelihood estimates.
How will a Bayesian approach this problem? Since p + ¢ +r = 1, it is natural to put
D(c, a2, a3), the Dirichlet distribution with parameters o; > 0,2 > 0,3 > 0, as a prior
distribution for (p,q,r). The next step is to obtain the posterior distribution conditional
on the data. Once again, this turns out to be an untractable problem. However, if the
unobserved frequencies n(AA) and n(BB) were available, then the posterior of (p, ¢,r) given
the (data,n(AA),n(BB)) is easy to obtain. Note that the likelihood of the data,n(AA)
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and n(BB) again comes from a multinomial distribution with 6 cells and is proportional

to
pn(AA)+n(A)+n(AB) qn(BB)+n(B)+n(AB)r2n(O)+n(A) —n(AA)+n(B)-n(BB) .

Denote (p,q,7) by Y = (Y1), YB, Y®) and (n(AA),n(BB)) by Z = (Z1,Z3). From the

above remarks, the conditional distribution of Y given (data,Z) can be written as
L{Y|data,Z)} = D(a}, a3, a3) (1.1)
where

ay = a;+n(AA)+n(A)+n(AB),
a; = az+n(BB)+n(B)+n(AB) and
o = az+2n(0)+n(A)—n(AA) + n(B) —n(BB)).

It is easy to write down the conditional distribution of the unobserved frequencies Z
given the data,Y as

£{Z|data, Y} = B(n(4), f 37) X B(n(B), f =) (1.2)

where B(M, ) stands for the Binomial distribution with M trials and probability of success
6.

Notice that equations (1.1) and (1.2) give us the conditional distributions £{Y|data,Z}
and L£{Z|data,Y}. The Gibbs sampler, which is a special case of the Markov Chain Monte
Carlo method, can be used to obtain a Markov chain Xo = (Yo, Zo),X; = (Y1,Z1),...
such that the distribution of X, = (Y, Z,) will converge to L{(Y,Z)|data} as n — oo.
By considering just the marginals Yy, Y;,... we see that Y,, converges in distribution to
required posterior distribution L£{(p,q,r)|data} = L{Y|data}. We could also use other
methods based on Markov chain theory to obtain better approximations to £{Y|data}.
Finally, we can approximate E(Y|data) which is the Bayes estimate of the vector (p, q,7).
This would be the Bayesian answer to the method of scoring for maximum likelihood
estimates.

How is the Markov chain X,,Xj,... generated? Fix arbitrary values for (Yo, Zo).
For n = 0,1,... generate Y4, from the distribution £{Y|data,Z,} as given in (1.1)
and generate Z,4, from the distribution £{Z|data, Y41} as given in (1.2). This way
we generate (Y1,Z;),(Y2,Z2),.... It is easy to see that this is a Markov chain whose
transition function can be expressed in terms of £L{Y|data,Z} and £{Z|data, Y} and that
L{(Y,Z)|data} is an invariant distribution for this transition function.

2 The Second Example

Let Y = (11,Y3,...,Y,) be iid random variables with unknown distribution P. Let
C1,Cy,...,C, be subsets of the real line, some of which may be singleton sets. Suppose
that the data gives the information ¥; € C;,i = 1...,n. f the C; = {¢},: = 1,...,n
are all singletons then we have observed the actual values of Y;,...,Y;. If the some C;’s
are singletons and other C;’s are sets of the form [¢;, 00), then this corresponds to case




of right censoring. The frequentist solution to estimating P is the usual Kaplan-Meyer
estimate. What if one were a Bayesian, and one uses a Dirichlet prior D,, where o is a
finite measure on the real line? Suppose that there are m uncensored observations and n—m
censored observations, that is without loss of generality that C; = {e1},...,Cn = {cn}
are singletons and the remaining C;’s are not singletons. Then, the data gives us the
information that Y; = ¢,...,Y, = ¢, and that Y41 € Cryy,...,Yn € Cp. Let V =
(Y41, -, Ys) be the actual unobserved values of the censored observations. What is the
posterior distribution of P given data? From the standard theory of Dirichlet distributions,
see for instance Ferguson (1972) or Sethuraman (1994), the posterior distribution of P given
Yi=c1,...,Ym = ¢n is Dy where o = a+ Y, §.,. As before, the posterior distribution
of P given data is not tractable. For any probability measure g and set B with y(B) > 0,

let ug(C) = %TBI be the restriction to B. Then we have the following two facts:

the conditional distribution of P given {data,V}is Dy where S =o'+ »_ ébv,, (2.1)

i=m-+1

and

the conditional distribution of V given {data,P}is [] Pc,. (2.2)
i=m+1

Starting from arbitrary values (P, Vi), we can carry out the Markov Chain Monte Carlo
Method to generate a Markov Chain (P, V1), (P2, V2),.... We can hope that its distribu-
tion will converge to the joint distribution of (P, V) given Z, and the required posterior
distribution is obtained from here by taking the marginal distribution of P. A crucial in-
termediate step in this Markov Chain Monte Carlo follows from the constructive definition
given is Sethuraman (1994). See Doss (1996) for details. Once again, the question arises
whether this Markov Chain will converge to the desired conditional distribution.

3 The Markov Chain Monte Carlo Method

Examples such as the one described in Sections 1 and 2 arise in many areas of Statistics.
In each of these problems there is a probability distribution = on a measurable space
(X,B), and we are interested in estimating characteristics of it such as «n(E) or [ fdr
where E € B and f is a bounded measurable function. Even when = is fully specified
one may have to resort to methods like Monte Carlo simulation, especially when 7 is not
computationally tractable. For this one uses the available huge literature on generation
of random variables from an explicitly or implicitly described probability distribution 7.
Generally these methods require & to be the real line or require that = have special features,
such as a structure in terms of independent real valued random variables. When one cannot
generate random variables with distribution 7 one has to be satisfied with looking for a
sequence of random variables Xi, Xj,... whose distributions converge to = and using X,
with a large index n as an observation from 7. This is called the Markov Chain Monte
Carlo Method. The preceding discussion of blood group data from Dr. C. R. Rao’s book is
an illustrative example. In this example, 7 is the posterior distribution £{Y,Z|data} and
an example of a functionals of interest may be E(Y|data) the Bayes estimate of Y.



Let P be a transition probability function on a measurable space (X,B), i.e. P is a
function on X x B such that for each z € X, P(z,-) is a probability measure on (X, B),
and for each C € B, P(-,C) is a measurable function on (X,B). Suppose that 7 is a
probability measure on (X, B) which is invariant for the Markov chain, i.e.

7(C) = / P(z,C)r(dz) for all C € B. (3.1)

We fix a starting point zo, generate an observation X; from P(zo, ), generate an observation
X, from P(X;,-), etc. This generates the Markov chain z¢ = Xo, X3, X3,.... In order to
make use of the Markov chain {X,}2, to get some information about 7, one needs results
of the form:

(a) Ergodicity: For all or for “most” starting values z, the distribution of X,, converges
to 7 in a suitable sense, for example

(al) Variation norm ergodicity: supgeg |P™(z,C) — n(C)| — 0, or

(a2) Variation norm mean ergodicity: supgeg |2 37 Pi(z,C) — n(C)| — 0.

(b) Law of large numbers: For all or for most starting values z, for each C € B,

-lez Ic(X;) = n(C) for a.e. realization of the chain,

=1

and for each f with [|f|dr < oo,

1 S (X)) — / fdm  for a.e. realization of the chain.

n i3

Then, we may estimate 7 for example by generating G such chains in parallel, obtaining
independent observations X{!),..., X(%), or by running one (or a few) very long chains.

4 Main Results

Our goal is to find conditions on a given Markov chain or rather on its transition function
P(-,-) so that some or all of the conditions (a) and (b) above hold, assuming that P
admits an invariant probability measure 7. In Markov Chain Monte Carlo applications,
the probability measure 7 of interest is by construction the invariant probability measure
of the Markov chain.

When {X,} is a Markov chain with a countable state space, say {1,2,...}, and transition
probability matrix P = (p; ;), the existence of an invariant probability distribution 7 and
the irreducibility condition that there exists a state 7y such that from any initial state ¢,
there is positive probability that the chain eventually hits o, are enough to guarantee that
(i) the chain {X,} is recurrent in an appropriate sense, (ii) conditions (b) and (a2) above
hold, and (iii) when an additional aperiodicity condition also holds, then (al) above also
holds. These facts are well known; see for instance, Hoel, Port and Stone (1972).




A natural question is whether this is true for general state space Markov chains. In
particular, when (3.1) holds, is there a form of the irreducibility condition under which
some or all of (a) and (b) above hold?

The Markov chain literature has a number of results in this direction; see Orey (1971),
Athreya and Ney (1978) and Nummelin (1984). Under a condition known as Harris recur-
rence (see below) the existence of an invariant distribution 7 implies mean ergodicity (con-
dition (a2)) and the laws of large numbers (condition (b)). Unfortunately, Harris recurrence
is not an easy condition to verify in general, and it is much stronger than irreducibility.

The main point of this paper is to show that when (3.1) holds, a simple irreducibility
condition ((4.3) below) is enough to yield (a2) and (b). An additional aperiodicity con-
dition yields (al) as well. This provides a complete generalization of the results for the
countable case. It is worth noting that recurrence emerges as a consequence of (3.1) and
the irreducibility condition (4.3), and is not imposed as a hypothesis.

Before stating our main theorems, we will need a few definitions. For any set C € B,
let No(C) = Snoi (X € C) and N(C) = X%_, I(X,, € C) be the number of visits
to C by time n and the total number of visits to C, respectively. The expectations of
N,.(C) and N(C), when the chain starts at z, are given by G,(z,C) =Y _, P™(z,C) and
G(z,C) = _x_, P™(z,C), respectively. Define T'(C) = inf{n : n > 0, X,, € C} to be the
first time the chain hits C, after time 0. Note that P,(T(C') < o0) > 0 is equivalent to
G(z,C) > 0.

The set A € B is said to be accessible from z if P,(T(A) < o) > 0. Let p be a
probability measure on (&,B). The Markov chain is said to be p-recurrent (or Harris
recurrent with respect to p) if for every A with p(A) > 0, P,(T(A) < o) =1forallz € X.
The chain is said to be p-irreducible if every set A with p(A) > 0 is accessible from all
z € X. The set A is said to be recurrent if P,(T(A) < oo)=1forallz € X.

For the case where the o-field B is separable, there is a very useful equivalent definition
of p-irreducibility of a Markov chain. In this case, we can deduce from Theorem 2.1 of
Orey (1971), on the existence of “C-sets,” that p-irreducibility of a Markov chain implies
that there exist a set A € B with p(A) > 0, an integer ng, and a number € > 0 satisfying

P(T(A)<o00)>0 forallz e X, (4.1)

and
z€ A, CeB imply P™(z,C) > ep(CnNA). (4.2)
Let pa(C) = 1(,?(—2)41. This is well defined because p(A) > 0. The set function p4 is a

probability measure satisfying p4(A) = 1. Note that (4.1) simply states that A is accessible
from all z € & and this condition does not make reference to the probability measure
p. Condition (4.2) states that uniformly in z € A, the ng-step transition probabilities
from z into subsets of A are bounded below by ¢ times p. That (4.1) and (4.2) imply
pa-irreducibility is, of course, immediate. This alternative definition of p4-irreducibility,
which applies to nonseparable o-fields as well, will be usually much easier to verify in
Markov chain simulation problems. By replacing p by p4, we can also assume with no loss
of generality that p is a probability measure with p(A) = 1 when verifying Condition (4.2).
We denote the greatest common divisor of any subset M of integers by g.c.d.(M).
We now state two theorems which hold for general Markov chains. They give sufficient
conditions for the Markov Chain Monte Carlo method to be successful and constitute the
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main results of this paper. The proofs of these theorems can be found in Athreya, Doss
and Sethuraman (1996).

Theorem 1 Suppose that the Markov chain {X,} with transition function P(z,C) has an
invariant probability measure w, i.e. (3.1) holds. Suppose that there is a set A € B, a
probability measure p with p(A) = 1, a constant € > 0, and an integer ng > 1 such that

r{z : P(T(A) < 00) >0} =1, (4.3)

and
P™(z,-) > ep(-) for each z € A. (4.4)
Suppose further that
g.c.d.{m : there is an €, > 0 such that P™(z,-) 2 €np(-) for each z € A} =1 (4.5)
Then there is a set D such that

7(D)=1 and sup|P"(z,C)—=(C)|—0 foreachz € D. (4.6)
ceB

Theorem 2 Suppose that the Markov chain { X, } with transition function P(z,C) satisfies
Conditions (3.1), (4.8) and (4.4). Then

ng—1
sup 1 > prrotr(z,C) — T(C)I —0 asm — oo for [r]-almost all z, (4.7)
CceB'No 9
and hence
sup %ZPj(a:, C) - 7r(C)| —0 asn— oo for [r]-almost all z. (4.8)
CeB j=1
Let f(z) be a measurable function on (X,B) such that { n(dy)|f(y)| < oo. Then
P,,{—Tl-l-z:f(Xj) — /r(dy)f(y)} =1 for [r]-almost all z (4.9)
J=1
and |
;EEz(f(XJ)) — /w(dy)f(y) for [x]-almost all z. (4.10)
i=1

Variants of these theorems form a main core of interest in the Markov chain litera-
ture. However, most of this literature makes strong assumptions such as the existence of a
recurrent set A and proves the existence of an invariant probability measure before estab-
lishing (4.6) and (4.7). Theorems 1 and 2 exploit the existence of an invariant probability
measure, which is given to us “for free” in the Markov chain simulation context, and estab-
lish the ergodicity or mean ergodicity under minimal and easily verifiable assumptions. For
example, we have already noted that in the context of the Markov chain simulation method,
we really need to check only (4.3), (4.4), and (4.5). To show (4.3) in most cases one will es-
tablish that P.(T'(A) < oo) > 0 for all z. Condition (4.5) is usually called the aperiodicity
condition and is automatically satisfied if (4.4) holds with no = 1. Condition (4.4) holds if
for each z € A, P™(z,-) has a non-trivial absolutely continuous component with respect
to some measure p and the associated density p™(z,y) satisfies inf, yes p™(z,y) > 0 for
some A with p(A) > 0.
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5 Back to the Illustrative Examples

Consider the special case where X = x%_,X1) and B = x?_,BY. We give below two
theorems that give easily verifiable conditions for the conclusions of Theorems 1 and 2 to
hold. We will use one of these theorems to show that the conditions of Theorems 1 and 2
hold in the example of Section 1 on data on blood groups of humans.

Consider the Markov Chain Monte Carlo algorithm for generating observations from
the joint distribution m of (X(), X(?)) as described in Section 3.

Theorem 3 Suppose that the conditional distributions 7 x(1)|x(2)=z(» and T x| x1)=501) have
densities, say pxwyxe(zM[z?) and pyexay(®]zM), respectively with respect to some
dominating measures p) and p®. Suppose further that for each i = 1,2 there is a set A®)
with p(A®)) > 0, and a § > 0 such that

pxex@(zM|z?) > 0 (5.1)

whenever
z® e A®  and 2O is arbitrary,

and

px(l)]x(2)($(1)|$(2)) >6 and px(2)|X(1)($(2)l$(1)) > 6§ whenever (e AW z(®) ¢ A?),

(5.2)
Then Conditions (4.3) and (4.4) are satisfied with no = 1. Thus, (4.5) is also satisfied,
and the conclusions of Theorems 1 and 2 hold.

Theorem 4 Suppose that the conditional distributions Tx@)|x(V=z1) has a density, say

pX(2)|X(1)(:1:(2)|a:(1)) with respect to some dominating measure p®). Suppose that there are
sets AW and AP, and a § > 0 such that

7rX(1)iX(2)(A(1)|37(2)) >0 (5.3)
for all (0,
Ty (AM)z®) > 6 (5.4)
for all £ € AP, and
pX(2)|X(1)(m(2)|z((1)) >§& whenever z € A(l),x(2) € A, (5.5)

Then conditions (4.3) and (4.4) are satisfied with no = 1. Thus, (4.5) is also satisfied, and
the conclusions of Theorems 1 and 2 hold.

We will verify the conditions of Theorem 3 in the example of blood group data from
humans in Section 1. Here Y®) = R, X = {0,...,n(A)} x {0,...,7(B)},X® =Y and
X@ = Z. We can take p(!) as the Lebesgue measure of R® and p(® as the counting measure
on X®. Put AM = [0.23,0.43] x [0.23,0.43] x [0.23,.43] and A® = X@), It is easy to
verify that p®(A®)) > 0 for i = 1,2 and that conditions (5.1) and (5.2) are satisfied for
some 6 > 0, since the Dirichlet distribution has a positive density function, A® is a finite
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set and the Binomial distribution with parameter in [0.23,0.43] has a positive frequency
function.

The verification of the conditions of Theorems 1 and 2 for the Bayesian solution to
the Kaplan-Meyer problem is not quite straightforward since the state space of (P, V) is
more complicated. We therefore consider only the Markov chain Vo, V;,V,, ... whose state
space is R*~™. By using (2.1) and (2.2), we see that the probability that {V, € x2 ., Bi}
given V,_; is given by

Prob{V, € x* . Bi|V,.1} = / I Pe.(B:nC:)D,(dP)

t=m+1

> / I P(B:nCi)D,(dP)
i=m+1

H?:m-{-l 7(‘8“ N Cf)
- Minala(R) +i-1]

n

> 0[] ac(B)

i=m+1

where v = o/ + L4y v,y and 0 = = [’o:}(;;_:_)i_ Tk 0 is a quantity independent
i=m+1

of By,...,B,. This verifies conditions (4.3) and (4.4) with ng = 1 for the chain {V,}.

Thus, (4.5) is also satisfied, and the conclusions of Theorems 1 and 2 hold. The distribution

of (P, V,) is a continuous function of the distribution of V,_; not depending on r and can

be written down as follows by using (2.1) and (2.2) once again:

Prob{P. € E,V, € x* 1 B[V,_1} = / I Po:(B:)D,(dP)
PeE 1=m+1
where v = o' + X,.,; 6,0 . The convergence of the distributions of {V,} together
: (r—1)
with the above remark implies the convergence in distribution of the whole Markov chain

(Po, Vo), (P1, V1), (P2, V3),... follows.
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